
2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 174

Computing Load Aware and Long-View Load Balancing for Cluster Storage Systems

Guoxin Liu and Haiying Shen and Haoyu Wang

Department of Electrical and Computer Engineering

Clemson University, Clemson, SC 29631, USA

{guoxinl, shenh, haoyuw}@clemson.edu

Abstract—In large-scale computing clusters, when the server
storing a task’s input data does not have sufficient computing
capacity, current job schedulers either schedule the task and
transmit the input data to the closest server or let the task
wait until the server has sufficient computing capacity, which
generates network load or task delay. To handle this problem,
load balancing methods are needed to reduce the number of
overloaded servers due to computing workloads. However,
current load balancing methods either do not consider the
computing workload or assume that it is proportional to the
number of data blocks in a server. Through trace analysis, we
demonstrate the diversity of computing workloads of different
tasks and the necessity of balancing the computing workloads
among servers. Then, we propose a cost-efficient Computing
load Aware and Long-View load balancing approach (CALV).
In addition to the computing load awareness, CALV is also
novel in that it achieves long-term load balance by migrating
out data blocks from an overloaded server that contribute
more computing workloads when the server is more overloaded
and contribute less computing workloads when the server is
more underloaded at different epochs during a time period.
CALV also has a lazy data block transmission method to
improve the load balanced state and avoid network load peak.
Trace-driven experiments in simulation and a real computing
cluster show that CALV outperforms other methods in terms
of balancing the computing workloads and cost efficiency.

Keywords-Computing cluster; Data allocation; Load balanc-
ing; Data locality

I. INTRODUCTION
Large-scale computing-based storage systems, such as

GFS [1] and HDFS [2], have been widely used to serve

data-intensive computing frameworks (e.g., MapReduce [3])

in computing clusters to concurrently support a variety of

data-intensive applications (e.g., search indexing, recom-

mendation systems and scientific computation [4]). Data-

intensive applications have a large amount of input data

and a certain or even large amount of computing workloads.

Sharing a cluster infrastructure among different applications

facilitates data sharing among the applications and also

enhances the resource utilization of the cluster, which saves

the capital cost of building separate clusters for each kind of

applications. However, the applications suffer unpredictable

performance variations [3] due to the resource multiplexing

between them.

Current computing clusters depend on job schedulers [2,

5, 4] of computing frameworks to improve system efficiency

such as data locality and task delay. Preserving “data local-

ity” is to put computing workloads, such as mapper tasks in

MapReduce [3], with their input data. That is, when a task’s

data servers (i.e., the servers storing the task’s input data)

do not have sufficient computing capacities to host this task,

it is allocated to the closest server with sufficient computing

capacity [2, 5]. However, it cannot preserve data locality,

which requires data transmission from the task’s data server

to its allocated server and generates network load. In order to

preserve the data locality, the Delay scheduler [4] postpones

a task’s running until its data server has sufficient computing

capacity, which however introduces extra delay for task

execution. Therefore, job schedulers cannot preserve data

locality exclusively without sacrificing the task delay. To im-

prove system efficiency with data locality preservation and

low task delay, the cooperation between the job scheduler

and the load balancer is critical. In this load balancing, when

a server is overloaded by its computing workloads, it moves

some data blocks to another server to release the computing

workloads of tasks targeting on these data blocks. Then, a

task’s data servers are unlikely to have insufficient comput-

ing capacities. However, previously proposed load balancing

methods [2, 6–14] for cluster storage systems aim to balance

I/O load but fail to consider the computing workload, which

however is the bottleneck in data-intensive applications. The

works in [9, 10] balance the number of blocks among servers

with the assumption that the computing workload of a server

is proportional to the number of blocks stored in the server.

However, this assumption does not always hold true due to

different popularity of stored data among servers [11] and

heterogeneous computing tasks in different applications.

Computing load unawareness aside, previous load bal-

ancing methods aim to achieve the load balanced state at

the time of load balancing after each time interval rather

than for a long term. Then, a server may still be overloaded

at some time epochs within a time interval since different

data blocks introduce different computing workloads at each

epoch in the time interval, and a block’s computing workload

varies over different epochs in the time interval. In this case,

the periodical time interval for running load balancing must

be small enough in order to maintain the load balanced

state most of the time, which however leads to many load

balancing operations and hence high overhead. Therefore,

it is critical to balance the computing workloads targeting

data blocks at each time epoch during a time interval, i.e.,

achieving long-term load balance.

175

Further, the load balancing operation itself must be cost-

efficient and scalable. There are tens of thousands of servers

and billions of data blocks in a commercial computing

cluster today [15], and the scale increases rapidly over time.

A load balancer needs to keep track of the workload for

each data block [11, 13, 14] and schedules “data reallo-

cation”, in which data blocks are moved among servers

to achieve load balance. A load balancer typically shuffles

terabytes of data per day [10]. This information collection

in tracking introduces tremendous network load and the

reallocation scheduling generates high computing load to

the load balancer. Then, the load balancer may become a

bottleneck, which affects the efficiency of load balancing.

Also, migrating many data blocks in a short time period

in reallocation introduces a large peak network load to

the storage system. To avoid this problem, a load balancer

should reduce the number of data blocks being migrated at

the same time. Therefore, designing a computing load aware

load balancing method that meets the above requirements in

a cluster storage system is not trivial.

In this paper, we first analyze a Facebook Hadoop cluster

trace [15, 2], which shows that i) the computing workloads

of tasks are heterogenous, ii) there are many server

overloads due to insufficient computing capacities, and

iii) the server overloads either exacerbate data locality or

delay task execution. Therefore, it is important to consider

computing workloads in load balancing. For this purpose,

we propose a Computing load Aware and Long-View load

balancing method (CALV) with high cost-efficiency and

scalability in a cluster storage system.

CALV has a coefficient-based data reallocation method

that conducts data reallocation among servers to balance the

computing workload, i.e., avoid overloads and fully utilize

the computing capacities of servers. An overloaded server

is overloaded at some epochs while may be underloaded

at other epochs in a time period. To achieve long-term

load balance during the time period, we define a coefficient

for data blocks in an overloaded server to represent their

priorities to be selected to reallocate. Rather than reporting

the load information of all blocks, each overloaded server

selects its partial blocks to report to the load balancer

to reallocate in order to become non-overloaded. Thus,

the network load for information collection, the computing

load on scheduling reallocation, and the network load for

reallocation are reduced. CALV is also enhanced by a lazy
data block transmission to avoid large peak network load

and improve the load balanced state.

CALV is the first work that balances the computing work-
loads in the long term among servers by reallocating data

blocks among them. We summarize our contributions below.

• Trace analysis on computing workloads. We measured the
Facebook Hadoop cluster trace to show the importance of

computing load aware load balancing.

•Computing load Aware Long-View load balancing method
(CALV). It consists of the following two components.

(1) Coefficient-based data reallocation;
(2) Lazy data block transmission.

• Trace-driven experiments. Trace-driven experiments in

simulation and a real cluster show the effectiveness of

CALV in balancing the computing workloads and its high

cost-efficiency.

The rest of this paper is organized as follows. Section II

presents the preliminaries of the load balancing problem and

the trace analysis results. Section III presents the design of

CALV in detail. Sections IV and V present the performance
evaluation of CALV in simulation and a real cluster. Section
VI presents the related work. Section VII concludes this

paper with remarks on our future work.

II. COMPUTING LOAD AWARE LOAD BALANCING

PROBLEM
A. Preliminaries

In this section, we present the environment of the cluster

storage system and its load balancing problem. In a cluster

storage system, we use S to denote the set of all servers,

and si to denote the i
th server. We use Cc

si to denote the

computing capacity of si represented by the number of
computing slots [2], such as cores of CPUs. There are a

set of files, each of which is split into several data blocks

(a unit of storage) [2, 11, 8]. We use dj to denote the j
th

data block, and all data blocks have the same size [2]. We

then use Dsi to denote the set of all data blocks stored

in si. To enhance data availability, each block has several
replicas [2] stored in different servers. Since we focus on

data-intensive computing applications containing long-term

batch jobs, such as MapReduce jobs [3], the computing

resource instead of I/O resource is the bottleneck of a server.

Thus, we focus on balancing the computing workload in this

paper. To additionally consider the I/O resources, we can

easily add the I/O capacity, such as storage capacity of a

data server, as constraints in data block reallocation.

Each data-intensive job, such as a MapReduce job [3], is

constituted of tasks. A task such as a mapper [3], denoted

by ti, processes a data block using a certain computing
resource. A task (or the computing workload of a task) can

be denoted by a 3-tuple as ti =< esti , e
f
ti , C

c
ti >. e

s
ti and

efti denote the time epochs during which ti is submitted and
finished, respectively, and Cc

ti denotes the required amount

of computing resource of ti, such as the number of comput-
ing slots in MapReduce. For the tasks that run periodically

in a computing cluster [16], we can predict their execution

time based on the historical log. For example, the Hadoop

cluster for Facebook, Yahoo! and Google periodically pro-

cess terabytes of data for advertisement, spam detection and

so on [17]. For a new submitted job without an execution

historical log, we can get its process execution time by

profiling run [16, 18]. We also assume that each task’s

176

0%

20%

40%

60%

80%

100%

1 10 100 1000

C
D

F

Task running time (s)

(a) Running time of tasks

0%

20%

40%

60%

80%

100%

0 20000 40000 60000

C
D

F

Number of currently submitted tasks

(b) Num. of concurrently sub-
mitted tasks

80%

85%

90%

95%

100%

0 10000 20000 30000 40000

C
D

F

Number of currently submitted tasks
from different jobs

(c) Num. of concurrently sub-
mitted tasks from diff. jobs

0%

20%

40%

60%

80%

100%

0 10 20 30 40

C
D

F

Num. of data transmissions of a server

(d) Num. of data transmis-
sions of a server

0%

20%

40%

60%

80%

100%

0 20000 40000 60000 80000

C
D

F

Waiting time of a task (s)

(e) Waiting time of a task

Figure 1: Trace data analysis results.

submission time is predictable in advance according to its

historical running records [16] or is indicated in advance. If a

task runs multiple times in a time period, we consider them

as different tasks associated with different running times.

Then, ti =< esti , e
f
ti , C

c
ti > of each task can be predicted.

We use T to denote a time interval for task scheduling

and load balancing, and use ek to denote the k
th time epoch

during T . When a task is scheduled to its data server, the
server does not have the task’s required computing resource,

we call such a server an overloaded server. The goal of

our load balancing method is to reduce the number of such

overloaded servers by data reallocation while achieving high

cost-efficiency with low network load, which is measured

by the product of the size of transmitted data and the

transmission path length [19, 20].

B. Trace Data Analysis

None of the previous load balancing algorithms [8–14]

considers the computing workloads associated with each

data block for load balancing. The works in [9, 10] assume

that the computing workloads in servers are proportional to

the number of their stored data blocks, and aim to balance

the number of data blocks among servers. In order to verify

that this assumption does not hold true and the importance

of considering the computing workloads in load balancing,

we analyze a Facebook Hadoop cluster trace [15, 2]. It is a

24-hour job running trace that contains 24442 jobs, the sub-

mission times of the mapper tasks of each job, and the input,

output and shuffle data size of each job. The number of tasks

of a job varies from 1 to 87307. Each mapper task uses one

computing slot for certain time to process one data block.

In order to find the running time of each task, we

conducted a profiling run of the jobs in the trace in a

Hadoop cluster with 128MB block size. The Hadoop cluster

has 8 nodes in Palmetto [21], each of which has 8 cores and

32GB memory. We profiled the running time of each mapper

task, which handles the inputs of a job. Figure 1(a) shows

the cumulative distribution function (CDF) of the running

time of all mapper tasks. We can see that the running

time of different tasks varies significantly. It indicates

that for different tasks, even though they require the same

amount of computing resources and the same I/O resource

(i.e., use one computing slot and request one 128MB data

block), their computing workloads vary largely since they

occupy the computing resources for different time periods.

Therefore, simply balancing the number of I/O requests or

the number of tasks targeting data blocks stored in servers

cannot balance their associated computing workloads.

Then, we analyzed the trace and drew Figure 1(b) and

Figure 1(c). Figure 1(b) shows the CDF of the number of

concurrently submitted tasks in the trace. It shows that there

are many tasks submitted concurrently. This implies that the

tasks compete each other for the computing capacities on

their data servers if their requested data blocks are stored

in the same servers. Therefore, it is important to balance

the computing workloads among servers over time to avoid

server overloads.

Figure 1(c) shows the CDF of the number of concurrently

submitted tasks belonging to different jobs in the trace. It

shows that the tasks from different jobs may compete each

other. Since different jobs have different data processing

procedures, the mapper tasks in a server may generate

different computing workloads. Therefore, simply balancing

the number of tasks per server by balancing the number

of data blocks processed by these concurrently submitted

tasks [9] cannot solve the problem.

When a task’s data server does not have sufficient

computing capacity, i.e., when it is overloaded due to

computing workload, the job schedulers handle this case in

two ways. In the FIFO scheduler [2], the task is allocated

to the closest server that has sufficient computing capacity

and the data is transmitted from the task’s data server to

this server, which however generates network load. In the

Delay [4] scheduler, the task waits until its data server has
sufficient computing capacity, which however generates

task delay. We then measure the number of such data

transmissions and the task delay to show the adverse effect

of computing workload imbalance.

We simulated 3000 servers as in [15] with 8 computing

slots in each server and 10PB of data [22], which are ran-

domly distributed among all servers. We simulated the 24442

jobs [15], and used the submission time and input/output

sizes of a job in the trace. The requested data is randomly

chosen and the execution time is set to the same time as in

our profiling run. Figure 1(d) shows the CDF of the number

of data transmissions from a server when it is overloaded

with the FIFO scheduler. We see that there are more than

50% of all servers transmitting more than 6 data blocks to

177

other servers. It indicates that the data locality is exacerbated

due to the server overloads. Figure 1(e) shows the CDF of

the waiting time of all tasks. We see that there are around

50% of all tasks waiting for more than 16s. It indicates that

the tasks are delayed due to the imbalance of computing

workloads among servers. Figures 1(a) - 1(e) show that the

computing load aware load balancing is very important to

improve the data locality and reduce the task latency.

III. COMPUTING LOAD AWARE AND LONG-VIEW LOAD

BALANCING

A. System Overview of CALV

Motivated by the observations from our trace study,

we propose a Computing load Aware Long-View load

balancing method (CALV) with high cost-efficiency in a
cluster storage system. In CALV, each server periodically
keeps track of the computing workloads targeting its data

blocks at each epoch (e.g., the number of computing slots

in each second) and creates the historical log. For new

submitted tasks, the job scheduler notifies their allocated

servers of their workloads. Based on the historical log

and the notification, each server checks if it will become

overloaded in the next T . Each overloaded server selects
data blocks to migrate out to release its extra computing

workloads while fully utilizing its computing capacity

over T and reports the workloads of these blocks to the

load balancer. Each server reports to the load balancer its

computing workloads and computing capacity. Then, the

load balancer schedules and conducts data reallocation for

the reported data blocks from the overloaded servers. In

the previous load balancing methods, each server reports

the information of each data block to the load balancer.

The pre-selection of migration blocks in CALV reduces the
amount of reported data, and hence reduces the network

overhead and the computing overhead in the load balancer.

One novelty of CALV lies in its coefficient-based data

reallocation that helps achieve long-term load balance during

T rather than at a time spot. During time period T , a server
may be overloaded in some epochs while underloaded in

other epochs. In an overloaded server, the data blocks that

contribute more computing workloads when it is more over-

loaded and contribute less computing workloads when it is

more underloaded at different epochs during T have higher

priorities to migrate out. Thus, long-term load balance over

T can be achieved with a limited number of data migrations.

CALV also incorporates one enhancement to improve the
load balance performance and peak network load, a lazy data

block transmission. Since the source server and destination

server of a migration block may be overloaded at some

epoches while non-overloaded at other epoches, the lazy

data block transmission method delays the block migration

until the source server is about to be overloaded due to the

computing workloads targeting on this data block. This way,

we can try to avoid the situation that the destination becomes

overloaded by hosting this data block.

B. Computing Workload Tracking and Reporting

For long-term load balance, CALV aims to balance the

computing workload at each epoch ek in the next T . In the
previous T , each server predicts the computing workloads
targeting its stored data at each epoch in the next T . The
computing workloads are predicted based on the historical

logs for periodically running tasks and are notified by the

job scheduler for new submitted jobs. To create the historical

log, each server needs to record the workload of each task

ti requesting each of its data blocks at time ek (e
s
ti ≤ ek ≤

efti). The whole set of the tasks requesting data block dj
is denoted by T ek

dj
. Then, we can get the total workloads

towards data block dj at epoch ek as:
L
dj
ek =

∑
ti∈Tek

dj

Cc
ti . (1)

Recall that the whole set of data blocks stored in server si
is denoted by Dsi . Then, we can get the workloads on si
during epoch ek as:

Lsiek =
∑

dj∈Dsi

L
dj
ek . (2)

Then, for each server si, at epoch ek ∈ T , if Lsi
ek

> Cc
si

(i.e., the aggregated computing workload targeting on data

blocks stored in si exceeds its computing capacity at epoch
ek), we regard si as an overloaded server at epoch ek; if
Lsi
ek
< Cc

si , we regard si as an underloaded server at epoch
ek. A server si is an overloaded server if it is an overloaded
server in at least one epoch in the next T . For the load
balancer to schedule data reallocation, in the previous T ,
each server si reports its workload to the load balancer at
each epoch as Lsi

e1 , L
si
e2 , ..., L

si
en and its computing capacity.

Also, each overloaded server needs to pre-select migration

data blocks to release its extra computing workload and

report the workload of each of these blocks at each epoch

as L
dj
e1 , L

dj
e2 , ..., L

dj
en . There are a large amount of data

blocks in the system and each block is associated with

varying workloads over time. If the load balancer considers

all the data blocks to achieve load balance, it cannot be

scalable. Each overloaded server pre-selecting data blocks

to reallocate increases the scalability of the load balancer.

C. Coefficient-based Data Reallocation
In this section, we first introduce how an overloaded

server pre-selects data blocks to reallocate and then present

how the load balancer schedules the data reallocation. We

start with explaining the rationale of the migration block

selection policy.

Rationale of the migration data block selection policy.
Each overloaded server si selects partial of its data blocks to
migrate out to release its extra computing overload. We use

an example shown in Figure 2 to illustrate the rationale of

our migration data block selection policy. In the figure, the

178

si

(a)�Reduce�num.�of�reported�
data�blocks�in�spatial�space

(b)�Reduce�num.�of�reported�
data�blocks�in�temporal�space

:�Computing�capacity�of�the�server�

e1 e2 e3
d1

d2

d3

d1

d2

d6

d5

sj

e1 e2 e3
d1

d2

d3

d5 d7

d6

d4

sk

e1 e2 e3
d1

d2

d3

d2 d3

d2d4

d3

(c)�Avoid�server�underload

Figure 2: Selection of data block to reallocate.

height of each data block represents the computing workload

targeting this data block during an epoch. For example, in

Figure 2(a), the workload of data block 1 and 2 at epoch e1
and e2 equal to 1 computing slot and the workload of block
3 at epoch e1 equal to 2 computing slots (L

d3
e1 = 2). When

an overloaded server selects the data blocks to migrate out,

it follows two principles. We explain the principles below.

Each overloaded server should try to reduce the number

of selected data blocks. This way, the size of information

reported to the load balancer is reduced, so that the network

load and computing load on the load balancer is reduced.

Also, it reduces the reallocation overhead due to fewer

block migrations. This objective can be achieved in both

the spatial space and the temporal space. We define a

server’s overloaded epoch, underloaded epoch and non-
overloaded epoch as the epoch in which the server is

overloaded, underloaded and non-overloaded, respectively.

The spatial space considers the workload of each block in

one overloaded epoch. The temporal space considers the

aggregated workload of each block in all overloaded epochs

during T . In the spatial space, for example, in Figure 2(a),
to release the extra 2 slots workload in e1, d3 (one block)
should be selected rather than both d1 and d2 (two blocks).
In the temporal space, for example, in Figure 2(b), d3 should
be selected to release the extra workload in both e1 and e2.
Selecting any other block in e1 and e2 can only release the
extra load of either e1 or e2. Therefore, the first principle is
that the data blocks contributing more computing workloads
at more overloaded epochs in the spatial space and temporal
space have a higher priority to be selected to reallocate.
Each overloaded server also should try to fully utilize its

computing resources, i.e., reduce the number of its under-

loaded epochs and its underloaded degree. By reallocating a

data block to another server to release the extra load in an

overloaded epoch, a server may become more underloaded at

other epoches. For example, as shown in Figure 2(c), though

reallocating d2 or d3 releases the extra load in epoch e1, it
makes the server more underloaded at epoch e2 or epoch e3,
respectively. Therefore, d1 should be reallocated instead of
d2 or d3. Thus, the second principle of data block selection
is that among all data blocks contributing workloads at an
overloaded epoch, the data blocks contribute less workload
at more underloaded epochs have a higher priority to be
selected to reallocate.

In order to jointly consider the above two principles

in migration data block selection, we introduce a load

balancing coefficient for the blocks in an overloaded server

to represent their priorities to be selected to reallocate. For

an overloaded server si at epoch ek, we define its unbalanced
workload at epoch ek as

usiek =

{
Lsiek − Cc

si if Lsiek �= Cc
si−c otherwise

(3)

where c is a computing capacity unit, such as a computing
slot in MapReduce. We set it to −c instead of 0 when si’s
computing resource is fully utilized in order to set a higher

coefficient for d1 than for d2 and d3 in Figure 2(c) according
to the second principle. Then, we define the load balancing

coefficient of data block dj in server si as:∑
∀ek∈T

usiek · L
dj
ek . (4)

The blocks with larger coefficients have a higher priority to

reallocate. If usiek > 0 during ek, which indicates that the

server is overloaded, a larger L
dj
ek leads to a larger coef-

ficient. Therefore, it follows the first principle. Otherwise

if usiek < 0, a smaller L
dj
ek leads to a larger coefficient.

Therefore, it follows the second principle.

For an overloaded server, releasing its extra computing

workload is more important than fully utilizing its com-

puting resource in load balancing. Therefore, the migration

blocks should be selected from the blocks that contribute

computing workloads at overloaded epochs within T . We
then introduce a concept called overload contribution that

measures the contribution of a block to the overload of an

overloaded server. We first calculate the overload degree of

an overloaded server si during each overloaded epoch ek as

osiek =

{
Lsiek − Cc

si if Lsiek > Cc
si

0 otherwise
(5)

which shows how overloaded server si is during ek. Then,
we can calculate the overload contribution of a data block

dj stored in si by ∑
∀ek∈T

osiek ∗ L
dj
ek (6)

If the overload contribution is positive, it indicates that

data block dj introduces computing workloads at server si’s
overloaded epochs.

Next, we introduce the process for an overloaded server to

select data blocks to report to the load balancer to reallocate.

Server si first calculates the overload contribution of all data
blocks stored in si. The server then chooses the blocks with
positive overload contributions. For each of these blocks,

server si calculates its coefficient based on Formula (4). The
server then sorts these data blocks in a decreasing order of

the coefficient. Starting from the first block in the sorted

list, server si selects the blocks one by one in the top-down
manner until it becomes non-overloaded at each epoch in T .
Every time when a block, say dj , is selected from the sorted
list, the computing workload of si at each epoch ek where

179

dj contributes workload is updated by L
si
ek

← Lsi
ek

− L
dj
ek .

Note that after reallocating the data blocks prior to data

block dj in the sorted list, the original overloaded epochs
where dj contributes computing workloads may become
non-overloaded epochs. If all the original overloaded epochs

where dj contributes computing workloads become non-
overloaded epochs, dj is removed from the sorted list.

This block selection process continues until server si is not
overloaded during T . Then, the overloaded server si reports
each selected data block dj to the load balancer in the form

of L
dj
e1 , L

dj
e2 , ..., L

dj
en .

Data reallocation scheduling at the load balancer. At the
previous T , each server checks if it will be overloaded
in the next T based on predicted and notified computing

workloads. If a server will be overloaded, it selects its

migration data blocks and reports the information to the load

balancer, as explained previously. Each server also reports its

computing capacity (Cc
si) and computing workload at each

epoch ek to the load balancer (L
si
e1 , L

si
e2 , ..., L

si
en). The load

balancer then schedules reallocating the reported data blocks

to other servers that will not be overloaded or generate

the least overload degree after hosting the blocks. Unlike

the previous load balancing methods, we use all servers

instead of underloaded servers as candidates to reallocate

the reported data blocks. This is because overloaded servers

in our method may have underloaded epochs in T before and
during the reallocation scheduling, which can be allocated

with workloads to reach the non-overloaded state in order

to fully utilize the computing resource of the servers.

We hope to migrate the most loaded block to the least

loaded server in order to quickly achieve load balance.

Thus, the reported blocks are ordered in descending order

of their accumulated workload during T , i.e.,
∑
∀ek∈T L

dj
ek

and the underloaded servers are ordered in descending

order of their accumulated available capacity during T ,
i.e.,

∑
∀ek∈T (C

c
si − Lsi

ek
). Starting from the first data block

di in the sorted block list, the load balancer schedules to
reallocate it from its source server si to another server to
release the overloads caused by di at si. In the sorted server
list, the load balancer checks each server in the top-down

manner. For each picked server sj , the load balancer first
checks whether it has enough storage capacity of di and
has no replica of di. If yes, the load balancer calculates
the workload of sj if it hosts di at each epoch ek during
T by L

sj
ek ← L

sj
ek + Ldi

ek
. If sj is non-overloaded at each

epoch where di contributes computing workload (i.e., di’s
overload contribution to sj equals to 0), di is scheduled to
be reallocated to sj . If such a server cannot be found in the
sorted server list, the load balancer calculates di’s overload
contribution for each server according to Formula (6).

It then chooses the server with the smallest overload

contribution as block di’s reallocated server. The smallest
overload contribution to a server means that dj contributes

low workloads when that server is overloaded and dj
increases lower overload degree on this server than on

other servers. Using this way, the load balancer schedules

the reallocation of each block in the sorted block list to a

server and finally completes scheduling the reallocation.

D. Lazy Data Block Transmission

Si

:�Computing�capacity�

e1 e2 e3
d1

d3

d1

d2

d1

d2

d3

d1

d2

d3

e4

Sj

e1 e2 e3
d5

d4

d5 d5 d5e4

Figure 3: Lazy data block transmission.

The coefficient-based data reallocation method in Sec-

tion III-C generates a new data allocation schedule offline,

which means the actual data reallocation has not been

conducted yet. Reallocating the data blocks right after the

reallocation scheduling may introduce tremendous network

loads in a short time and also overload the destination

server, which may disturb the execution of user jobs at

the beginning of next T . For example, in Figure 3, in the
reallocation schedule, d3 needs to be transmitted from si
to sj , since d3 contributes more overloads in si than in
sj . If we transmit d3 at the beginning of T at e1, sj
becomes overloaded at e1. However, if we wait and transmit
d3 at e2, there will be no overloads for both si and sj .
Thus, to avoid overloading the destination server and the

network load peak, the load balancer also determines the

block transmission time. It delays the transmission of each

block from the source server until the first time that the

block contributes to the overload of the source server.

Below, we introduce how the load balancer determines the

block transmission time for each data block to be reallocated.

For data reallocation of each data block, say dk, from serve

si to server sj , the load balancer finds their first overloaded
epochs where block dk contributes workload if they host dk,
denoted by eosi,dk

and eosj ,dk
, respectively. That is,

eosi,dk
=min{er|er ∈ T ∧ Ldk

er · osier > 0};
eosj ,dk

=min{er|er ∈ T ∧ Ldk
er · osjer > 0}.

If eosi,dk
> eosj ,dk

, it means that si is not overloaded
during data dk’s first several task processes, but sj may be
overloaded if reallocating dk to it during this time period.
The load balancer then calculates the completion time of the

last task targeting dk at sj prior to e
o
si,dk

, denoted by

efsj ,dk
= max{er|er ∈ T ∧ er < eosi,dk

∧ Ldk
er · osjer > 0}.

Then, the load balancer randomly selects an epoch within

(efsj ,dk
, eosi,dk

) for dk’s reallocation. Take d3 in Figure 3 for
example, we can get that eosi,d3

= e3, e
o
sj ,d3

= e1. Since

eosi,d3
> eosj ,d3

and efsj ,dk
= e1, the data can be transmitted

within (e1, e3), which is e2. If e
o
si,dk

≤ eosj ,dk
, it indicates

that the source server is overloaded before the destination

server becomes overloaded if it stores dk. Then, dk should be

180

transmitted before eosi,dk
. Thus, the load balancer randomly

selects a time within [e1, e
o
si,dk

) for di’s reallocation.

IV. TRACE-DRIVEN PERFORMANCE EVALUATION

We conducted trace-driven experiments to evaluate CALV
in comparison with other load balancing and data allocation

methods using the Facebook Hadoop cluster trace [15, 2].

Based on the trace, we simulated 3000 servers in a com-

puting cluster with the typical fat-tree topology [23]. In our

experiments, we varied the number of jobs as x times of
the number of jobs in the trace (i.e., 24442), where x was
increased from 0.5 to 1.5 with a step size of 0.25. The

submission time and the input/output size of each job were

set to the values in the trace. As [16, 18], we set each task’s

execution time as its execution time in an offline running

in Palmetto in Section II-B. The storage and computing

capacities of each server were set to 12TB [24, 25] and

8 computing slots [21, 26], respectively. The default size of

a block and the number of replicas were set to 64MB and

3, respectively [2]. The total size of all blocks was set to

10PB because there are tens of PBs of data in a commercial

cluster such as the Facebook’s cluster [22]. By default, each

of the requested data block was randomly chosen from all

blocks. We set the time period T to 24 hours and the epoch
e to 1 second, and set c = 1.
We compared CALV with the following data allocation

and load balancing methods: Random [2], Sierra [10],

Ursa [11] and a Computing load Aware load balancing
method (CA). Random randomly allocates data blocks to

servers. Sierra allocates equal number of blocks among
servers in order to balance the computing workload. Ursa
allocates data blocks to servers so that each server has a re-

quest rate targeting its data blocks less than its I/O capacity.

In our experiments, we modified Ursa to achieve an equal
request rate on each server since we simulated a homogenous

environment of servers with equal amount of each type of

resources. CA uses the average computing workload per

second to measure the block load in load balancing and

aims to let all servers have the same average computing

workload per second. We chose three typical job schedulers

to assign tasks among servers after load balancing: FIFO [2],
Fair [5] and Delay [4]. FIFO schedules jobs in an increasing
order of their submission times and allocates a task to the

closest server with sufficient computing capacity if its data

server has insufficient computing capacity. Delay delays
the scheduling of a task until one of its data servers has

available computing slots. In Fair, tasks of different jobs
share resource fairly, that is, currently running jobs have the

same average number of computing slots over time. We use

the FIFO scheduler by default.

We first allocate data blocks to servers randomly. After

running all the jobs with a job scheduler, we ran a load

balancing method to reallocate data blocks. Then, we ran the

jobs again and measure the performance. We reported the

average performance of each method from 10 experiments.

A. Effectiveness of Load Balancing

1) Performance of Data Locality: In the FIFO and Fair
schedulers, when a task is allocated to another server when

its data server does not have sufficient computing capacity,

the task’s required data is transmitted from its data server to

its allocated server. We first show the network load due to

such data transmissions, which is measured by the product

of the size of transmitted data and the transmission path

length [19, 20].

Figures 4(a) and 4(b) show the percentage of the network

load of each load balancing method compared to the network

load of Random using the FIFO and Fair schedulers, respec-
tively. The result follows 100%=Random>Sierra>Ursa>
CA> CALV. Random allocates data blocks to all servers

randomly without a specific load balancing operation. Thus,

more servers become overloaded due to computing work-

loads since they store more data blocks being processed by

tasks simultaneously, leading to many data transmissions to

other servers for processing. As a result, Random generates
the largest network load. Sierra balances the workload by
allocating equal number of data blocks to servers. However,

data blocks may be processed by different number of tasks

and different tasks require different amounts of computing

resources. Therefore, some servers may still become over-

loaded and need to transmit data blocks to other servers.

Thus, Sierra generates network load less than Random but

larger than other methods. Ursa balances the average number
of data requests per unit time among servers but does not

balance the computing workloads among servers. Therefore,

some servers may be overloaded due to too many tasks

processing data blocks. Thus, Ursa generates larger network
load than CA, which balances the computing workloads
among servers. However, since CA does not aim to achieve

long-term load balance, even though a server’s average

computing workload per second during T does not exceed its
computing capacity, there may be some time epochs, during

which its computing workload from concurrently submitted

tasks exceeds its computing capacity. Therefore, CA gen-

erates larger network load than CALV, which balances the
computing workloads over time in T among servers.

We then repeated the experiments with skewed data

request distribution on blocks, since the workload usually

are highly skewed to a few data blocks [11]. As [11], we

set the number of task requests for each block follow a

truncated power-law distribution with a lower bound and

shape as 1 and 2, respectively. Figures 5(a) and 5(b) show

the percentage of the network load of each load balancing

method compared to the network load of Random with

the FIFO and Fair schedulers, respectively under skewed
data requests. They show that the network load follows

100%=Random>Sierra>Ursa>CA>CALV due to the same
reasons as in Figures 4(a) and 4(b). Figures 5(a) and 5(b)

181

0
20
40
60
80

100
120

0.5 0.75 1 1.25 1.5

%
 o

f
n

e
tw

o
rk

 lo
ad

co

m
p

ar
e

d
 t

o
 R

an
d

o
m

x times of num. of jobs

Random Sierra Ursa CA CALV

(a) Network load with FIFO

0
20
40
60
80

100
120

0.5 0.75 1 1.25 1.5

%
 o

f
n

e
tw

o
rk

 lo
ad

co

m
p

ar
e

d
 t

o
 R

an
d

o
m

x times of num. of jobs

Random Sierra Ursa CA CALV

(b) Network load with Fair

Figure 4: Data locality performance of all methods.

0
20
40
60
80

100
120

0.5 0.75 1 1.25 1.5

%
 o

f
n

e
tw

o
rk

 lo
ad

co

m
p

ar
e

d
 t

o
 R

an
d

o
m

x times of num. of jobs

Random Sierra Ursa CA CALV

(a) Network load with FIFO

0
20
40
60
80

100
120

0.5 0.75 1 1.25 1.5

%
 o

f
n

e
tw

o
rk

 lo
ad

co

m
p

ar
e

d
 t

o
 R

an
d

o
m

x times of num. of jobs

Random Sierra Ursa CA CALV

(b) Network load with Fair

Figure 5: Data locality performance with skewed data requests.

0

10

20

30

40

50

0.5 0.75 1 1.25 1.5

R
e

d
u

ce
d

 a
vg

. l
at

e
n

cy

p
e

r
ta

sk
 (

s)

x times of num. of jobs

Random=0 Sierra Ursa CA CALV

(a) Random data request distribution

0

10

20

30

40

50

0.5 0.75 1 1.25 1.5

R
e

d
u

ce
d

 a
vg

. l
at

e
n

cy

p
e

r
ta

sk
 (

s)

x times of num. of jobs

Random=0 Sierra Ursa CA CALV

(b) Skewed data request distribution

Figure 6: Performance on task latency.

0.E+0

5.E+6

1.E+7

2.E+7

2.E+7

3.E+7

0.5 0.75 1 1.25 1.5

N
u

m
. o

f
re

p
o

rt
e

d

b
lo

ck
s

x times of num. of jobs

CALV CALV-MAX CALV-Random CALV-All

Figure 7: Performance on reduc-
ing network overhead.

1
4

16
64

256
1024

0.5 0.75 1 1.25 1.5
x times of num. of jobs

Saved % of network load
Saved % of peak num. of reallocated blocks
Reduced num. of overloads (*20)

Figure 8: Effectiveness of lazy
data block transmission.

indicate that CALV achieves higher data locality perfor-

mance and hence saves much more network load than other

methods with skewed requests.

2) Performance of Task Latency: In this section, we

tested the performance of all load balancing methods with

the Delay scheduler. We measured the task latency, which is
the time between its submission until the end of its execu-

tion. A shorter task latency leads to a higher system through-

put. Figures 6(a) and 6(b) show the reduced average latency

per task of all methods compared to Random. They show that
the result follows 0=Random<Sierra<Ursa<CALV. This is
because if a method introduces more server overloads, tasks

need to wait for a longer time until their data servers are

available, which leads to longer average task latency. There-

fore, these figures exhibit the opposite order of all methods

compared to Figures 4 and 5. The figures indicate that CALV
generates the shortest task latency among all the methods.

B. Cost-Efficiency of Load Balancing
To further reduce the computing and network loads of

the load balancer and also reduce the network overhead

in data reallocation, CALV has a coefficient-based data

reallocation method to choose data blocks as few as

possible to reallocate. In order to measure the effectiveness

of this method, we measured the performance of CALV
compared to CALV-Max, CALV-Random and CALV-All. In
CALV-Max, each server reports the data blocks with the
largest overload contributions until it is non-overloaded.

In CALV-Random, each server randomly chooses the data
blocks with positive overload contributions until it is

non-overloaded. In CALV-All, each server reports all data
blocks with positive overload contributions.

Figure 7 shows the number of blocks reported to the load

balancer in all methods versus the number of jobs. The re-

sult follows CALV-All>CALV-Random>CALV-Max≈CALV.
CALV-Random selects partial of all data blocks contributing

workloads when the server is overloaded. Thus, it reports

fewer data blocks than CALV-All which reports all such data
blocks. CALV-Max and CALV report the data blocks with the
largest overload contributions and load balancing coefficient,

respectively, which contribute more computing workloads

than other data blocks to server overloads. Therefore, CALV
and CALV-Max report the smallest number of data blocks to
the load balancer in all methods. The figure also shows that

all methods report more data blocks when there are more

jobs processed in the system. This is because more jobs

lead to more server overloads, which produces more reported

data blocks to the load balancer. This figure indicates that

CALV and CALV-Max are effective in reducing the number
of data blocks reported to the load balancer, leading to

lower network load and computing overhead on the load

balancer than other methods. However, since CALV chooses
data blocks with the additional consideration of the second

principle in Section III-C compared to CALV-Max, the
computing capacities in source servers can be more fully

utilized after data reallocation in CALV than in CALV-Max.

C. Performance of Lazy Data Transmission

In this section, we present the performance of CALV’s
lazy data transmission method in reducing the peak net-

work overhead for data reallocation and improving the load

balance performance. Recall that this method can avoid

overloading the destination servers. If a destination server

is overloaded, the task whose data server is this destination

server will be allocated to another server and its required

block needs to be transmitted, which generates network

load. Figure 8 shows the saved percentage of network load

calculated by (nl−nl′)/nl, where nl and nl′ are the network
loads of CALV without and with the lazy transmission

method, respectively. It shows that the lazy transmission

method can save at least 5.1% network load. Without this

method, the destination server may be overloaded earlier

182

0
20
40
60
80

100
120

0.5 0.75 1 1.25 1.5

%
 o

f
n

e
tw

o
rk

 lo
ad

co

m
p

ar
e

d
 t

o
 R

an
d

o
m

x times of num. of jobs

Random Sierra Ursa CA CALV

(a) Network load with FIFO

0
20
40
60
80

100
120

0.5 0.75 1 1.25 1.5

%
 o

f
n

e
tw

o
rk

 lo
ad

co

m
p

ar
e

d
 t

o
 R

an
d

o
m

x times of num. of jobs

Random Sierra Ursa CA CALV

(b) Network load with Fair

Figure 9: Data locality performance on a Hadoop cluster.

0

10

20

30

40

50

0.5 0.75 1 1.25 1.5

R
e

d
u

ce
d

 a
vg

. l
at

e
n

cy

p
e

r
ta

sk
 (

s)

x times of num. of jobs

Random=0 Sierra Ursa CA CALV

Figure 10: Reduced task latency
on a Hadoop cluster.

0.E+0

2.E+5

4.E+5

6.E+5

8.E+5

0.5 0.75 1 1.25 1.5

N
u

m
. o

f
re

p
o

rt
e

d

b
lo

ck
s

x times of num. of jobs

CALV CALV-MAX CALV-Random CALV-All

Figure 11: Num. of reported
blocks on a Hadoop cluster.

than the source server due to hosting the migrated block.

With lazy transmission, the network load due to such kind

of overloads in the destination servers can be avoided. This is

confirmed by the result of the reduced number of overloads

in Figure 8. It shows that the reduced number of overloads

increases when the number of jobs increases.

Figure 8 also shows the saved percentage of the peak

number of reallocated blocks during a second within T of

CALV with the lazy data block transmission method com-

pared to CALV without this method. We see that this method
saves at least 99.95% of the peak number of data blocks

reallocated. Without this method, all data blocks are reallo-

cated right after the reallocation scheduling. By arranging

the data transmissions at different times, the lazy data block

transmission method releases the peak network overhead in

data reallocation. This figure verifies that the lazy data trans-

mission method can reduce the peak network overhead for

data reallocation and improve the load balance performance.

V. PERFORMANCE EVALUATION ON A REAL CLUSTER

In this section, we present the experimental results on

a real cluster. We implemented CALV and its comparison

methods on the Apache Hadoop (version 1.2.1) on Pal-

metto [21], which is a computing cluster consisting of 771

8-core nodes. Due to the limitation of usage, we randomly

selected 100 nodes to form a computing cluster. Since the

server scale is reduced to 1/30 as in the trace, we reduced
the number of total jobs to 1/30 of the number of jobs
in the trace. Also, due to the storage usage limitation on

each node, we set each server’s storage capacity and the

input/output size of a job to be 1/1000 of their original
settings. All other settings remain the same as in simulation.

We measured the performance of CALV with the FIFO,
Fair and Delay schedulers, respectively, by repeating the
experiments in Sections IV-A1 and IV-A2.

Figures 9(a) and 9(b) show the percentage of the network

load compared to Random of all methods versus the number
of jobs using the FIFO and Fair schedulers, respectively.
They illustrate the same order and trend of all methods as in

Figures 4(a) and 4(b), respectively, due to the same reasons.

The results confirm that CALV can save more network load
than all other methods with its computing load aware load

balancing on a real computing cluster.

Figure 10 shows the reduced task latency of all methods

compared to Random. It demonstrates the same order and

trend of all methods as in Figure 6(a) due to the same

reasons. It confirms that CALV can reduce the task latency
and improve the task throughput with the Delay scheduler
on a real computing cluster.

Figure 11 shows the number of blocks reported to

the load balancer in all methods. It illustrates the same

order and trend of all methods as in Figure 7 due to the

same reasons. It indicates that the coefficient-based data

reallocation in CALV is effective in reducing the computing
and network overhead of the load balancer and the network

overhead in data reallocation.

VI. RELATED WORK

Many research efforts have been devoted to data allocation

in large-scale computing clusters. They either randomly

allocate data without the load balance consideration or

balance the number of data blocks or the I/O load in servers.

Random data allocation. The works in [2, 6, 27]

randomly allocate data blocks to servers in the cluster in

order to balance the storage load. Weil et al. [7] proposed to
randomly select data blocks to be reallocated to the newly

added server in order to balance the storage utilization

between the existing servers and newly added servers, and

randomly allocate data blocks stored in a failed server to all

other servers to maintain the load balance among servers.

However, all these data allocation methods cannot avoid

server overloads due to computing workloads.

Balancing the number of data blocks. In [8], the servers
are divided into two groups, primary and secondary servers,

and the primary replica and secondary replicas of each block

are stored in these two groups accordingly. Within each

group, the data blocks are evenly distributed among servers,

and the requests of a data block are evenly distributed

between the primary replica and secondary replicas. Hsiao et
al. [9] assumed that the computing workloads in servers are
proportional to the number of blocks stored in them and

aimed to balance the number of data blocks among servers.

With the same assumption, Thereska et al. [10] proposed
to uniformly allocate data blocks to all servers. However,

this assumption does not hold true in reality. Our analysis

on the real trace in Section II-B demonstrates the high

diversity of computing workloads targeting different data

blocks. Therefore, these methods cannot avoid the server

overloads due to computing workloads by allocating data

183

blocks without considering the difference of their associated

computing workloads.

Balancing the I/O load. You et al. [11] found that the
I/O workload varies among data blocks in servers, and there

are servers over-utilizing their I/O capacities. Thus, they

proposed Ursa to migrate data blocks in these servers to
servers not fully utilizing their I/O capacities, with band-

width cost minimization. Bonvin et al. [12] proposed a self-
managed key-value storage service in cloud storage. Each

data partition migrates or replicates itself by considering

both monetary payment to cloud providers and its popularity

in order to balance the queries among servers and meanwhile

minimize the payment cost. In [13, 14], the problem of data

allocation with I/O load balance and reallocation cost min-

imization is proved to be NP-Hard, and heuristic solutions

are proposed for this problem.

CALV is the first work that balance the computing

workloads with the consideration of the differences of

computing workloads associated with data blocks in

servers. It is also novel in that it achieves load balance

in a long term rather than at a time spot. CALV also

improves the cost-efficiency and scalability while achieving

its long-term load balance goal.

VII. CONCLUSION

Through an analysis of a Facebook cluster’s job running

trace, we show the importance of considering the computing

workloads in load balancing. We then propose a Computing

load Aware and Long-View load balancing method (CALV).
CALV is cost-efficient and creative in two features: i) it

considers computing workload in load balancing, and ii) it

achieves long term load balance. To achieve these objec-

tives, when selecting data blocks to migrate out from an

overloaded server, CALV chooses the blocks that contribute
more workloads at the server’s more overloaded epochs and

contribute less workloads at the server’s more underloaded

epochs. To further improve the load balance performance,

CALV incorporates a lazy data block transmission method. It
chooses a time for each data migration in order to reduce the

destination server overloads, and release the peak network

overhead for data reallocation. The trace-driven experiments

on both simulation and a real computing cluster show that

CALV outperforms other methods in improving data locality,
reducing task delay, network load and reallocation overhead.

In the future, we will study the dynamic load balancing

within T for jobs without planned submission times.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants

NSF-1404981, IIS-1354123, CNS-1254006, CNS-1249603,

Microsoft Research Faculty Fellowship 8300751.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S. Leung. The Google File System.
In Proc. of SIGOPS, 2003.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop
Distributed File System. In Proc. of MSST, 2010.

[3] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. 2004.

[4] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica. Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling. In Proc. of EuroSys, 2010.

[5] Apache. Fair Scheduler. http://hadoop.apache.org/docs/r1.2.1
/fair scheduler.html, 2010, [accessed in July 2015].

[6] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegel-
berg, H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash,
R. Schmidt, and A. Aiyer. Apache Hadoop Goes Realtime at
Facebook. In Proc. of SIGMOD, 2011.

[7] S. A. Weil, S. A. Brand, E. L. Miller, D. D. E. Long, and C. Maltzahn.
Ceph: A Scalable, High-performance Distributed File System. In
Proc. of OSDI, 2006.

[8] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and
K. Schwan. Robust and Flexible Power-Proportional Storage. In
Proc. of SoCC, 2010.

[9] H. Hsiao, H. Su, H. Shen, and Y. Chao. Load Rebalancing for
Distributed File Systems in Clouds. TPDS, 2013.

[10] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: practical power-
proportionality for data center storage. In Proc. of EuroSys, 2011.

[11] G. You, S. Hwang, and N. Jain. Scalable Load Balancing in Cluster
Storage Systems. In Proc. of Middleware, 2011.

[12] N. Bonvin, T. G. Papaioannou, and K. Aberer. A Self-Organized,
Fault-Tolerant and Scalable Replication Scheme for Cloud Storage.
In Proc. of SoCC, 2010.

[13] D. Kunkle and J. Schindler. A Load Balancing Framework for
Clustered Storage Systems. In Proc. of HiPC, 2008.

[14] E. A. Eric, S. Spence, R. Swaminathan, M. Kallahalla, and Q. Wang.
Quickly Finding Near-Optimal Storage Designs. TOCS, 2005.

[15] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The Case for
Evaluating MapReduce Performance Using Workload Suites. In Proc.
of MASCOTS, 2011.

[16] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca.
Jockey: guaranteed job latency in data parallel clusters. In Proc. of
EuroSys, 2013.

[17] A. Verma, L. Cherkasova, and R. H. Campbell. RIA: Automatic
Resource Inference and Allocation for MapReduce Environments. In
Proc. of ICAC, 2011.

[18] I. Gupta, B. Cho, M. R. Rahman, T. Chajed, N. Abad, C.
L.and Roberts, and P. Lin. Natjam: Eviction Policies For Supporting
Priorities and Deadlines in Mapreduce Clusters. In Proc. of SoCC,
2013.

[19] A. Beloglazov and R. Buyya. Optimal Online Deterministic Algo-
rithms and Adaptive Heuristics for Energy and Performance Efficient
Dynamic Consolidation of Virtual Machines in Cloud Data Centers.
CCPE, 2011.

[20] C. Peng, M. Kim, Z. Zhang, and H. Lei. VDN: Virtual Machine Image
Distribution Network for Cloud Data Centers. In Proc. of INFOCOM,
2012.

[21] Palmetto Cluster. http://http://citi.clemson.edu/palmetto/, [accessed in
July 2015].

[22] P. Vagata and K. Wilfong. Scaling the Facebook data warehouse to
300 PB. https://code.facebook.com/posts/22986
1827208629/scaling-the-facebook-data-warehouse-to-300-pb/,
[accessed in July 2015].

[23] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity
Data Center Network Architecture. In Proc. of SIGCOMM, 2008.

[24] Y. Wang, M. Kapritsos, Z. Ren, P. Mahajan, J. Kirubanandam,
L. Alvisi, and M. Dahlin. Robustness in the Salus scalable block
store. In Proc. of NSDI, 2013.

[25] Apache Hadoop FileSystem and its Usage in Facebook.
http://cloud.berkeley.edu/data/hdfs.pdf.

[26] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and
A. Rowstron. Scale-up vs Scale-out for Hadoop: Time to rethink?
In Proc. of SoCC, 2013.

[27] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. Kingfisher: Cost-aware
elasticity in the cloud. In Proc. of INFOCOM, 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

